ICLR 2026 - Submissions
Submissions
Summary Statistics
| Quantity AI Content | Count | Avg Rating |
|---|---|---|
| 0-10% | 0 (0%) | N/A |
| 10-30% | 1 (100%) | 4.50 |
| 30-50% | 0 (0%) | N/A |
| 50-70% | 0 (0%) | N/A |
| 70-90% | 0 (0%) | N/A |
| 90-100% | 0 (0%) | N/A |
| Total | 1 (100%) | 4.50 |
| Title | Abstract | Avg Rating | Quantity AI Content | Reviews | Pangram Dashboard |
|---|---|---|---|---|---|
| PT$^2$-LLM: Post-Training Ternarization for Large Language Models | Large Language Models (LLMs) have shown impressive capabilities across diverse tasks, but their large memory and compute demands hinder deployment. Ternarization has gained attention as a promising co... | 4.50 | 16% | See Reviews | View AI Dashboard |