ICLR 2026 - Submissions

SubmissionsReviews

Submissions

Summary Statistics

Quantity AI Content Count Avg Rating
0-10% 1 (100%) 5.00
10-30% 0 (0%) N/A
30-50% 0 (0%) N/A
50-70% 0 (0%) N/A
70-90% 0 (0%) N/A
90-100% 0 (0%) N/A
Total 1 (100%) 5.00
Title Abstract Avg Rating Quantity AI Content Reviews Pangram Dashboard
Teaching Pretrained Language Models to Think Deeper with Retrofitted Recurrence Recent advances in depth-recurrent language models show that recurrence can decouple train-time compute and parameter count from test-time compute. In this work, we study how to convert existing pretr... 5.00 0% See Reviews View AI Dashboard
PreviousPage 1 of 1 (1 total rows)Next