ICLR 2026 - Submissions
Submissions
Summary Statistics
| Quantity AI Content | Count | Avg Rating |
|---|---|---|
| 0-10% | 1 (100%) | 4.00 |
| 10-30% | 0 (0%) | N/A |
| 30-50% | 0 (0%) | N/A |
| 50-70% | 0 (0%) | N/A |
| 70-90% | 0 (0%) | N/A |
| 90-100% | 0 (0%) | N/A |
| Total | 1 (100%) | 4.00 |
| Title | Abstract | Avg Rating | Quantity AI Content | Reviews | Pangram Dashboard |
|---|---|---|---|---|---|
| S2J: Bridging the Gap Between Solving and Judging Ability in Generative Reward Models | With the rapid development of large language models (LLMs), generative reward models (GRMs) have been widely adopted for reward modeling and evaluation. Previous studies have primarily focused on trai... | 4.00 | 3% | See Reviews | View AI Dashboard |