ICLR 2026 - Submissions
Submissions
Summary Statistics
| Quantity AI Content | Count | Avg Rating |
|---|---|---|
| 0-10% | 0 (0%) | N/A |
| 10-30% | 0 (0%) | N/A |
| 30-50% | 0 (0%) | N/A |
| 50-70% | 0 (0%) | N/A |
| 70-90% | 0 (0%) | N/A |
| 90-100% | 0 (0%) | N/A |
| Total | 1 (100%) | 5.50 |
| Title | Abstract | Avg Rating | Quantity AI Content | Reviews | Pangram Dashboard |
|---|---|---|---|---|---|
| Shift-and-Sum Quantization for Visual Autoregressive Models | Post-training quantization (PTQ) enables efficient deployment of deep networks using a small set of data. Its application to visual autoregressive models (VAR), however, remains relatively unexplored.... | 5.50 | N/A | See Reviews |